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Abstract 
 

We apply numerical and analytic techniques to study the Boussinesq approximation in 

Rayleigh-Taylor and Richtmyer-Meshkov instabilities. In this approximation one sets the 

Atwood number A  equal to zero except in the acceleration or velocity-jump terms. While this 

approximation is generally applied to low- A  systems, we show that it can be applied to high- A  

systems also in certain regimes and to the “bubble” part of the instability, i.e., the penetration 

depth of the lighter fluid into the heavier fluid. We extend the Boussinesq approximation and 

show that it always overestimates the penetration depth but the error is never more than about 

41%. 
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I. INTRODUCTION AND GENERAL RESULTS 

An interface between two fluids becomes unstable when placed in a gravitational field or 

is subjected to an acceleration g


 normal to the interface. Called the Rayleigh-Taylor (RT) 

instability,1,2 it occurs when g


 is directed from the low-density ( A ) fluid towards the higher-

density ( B ) fluid. If the interface is subjected to a shock moving in either direction then another 

instability, called the Richtmyer-Meshkov (RM) instability3,4 develops. Here the governing 

parameter is the jump velocity  dtgv


, the integral taken over the period when the interface 

is subjected to the very large but very brief acceleration induced by the shock. As reviewed by 

several authors,5-7 these instabilities operate at all scales – astrophysical to sub-millimeter scales. 

We are particularly interested in Inertial Confinement Fusion (ICF)8. The importance of the RT 

instability was recognized in the original paper on ICF9 and has gained even more prominence as 

recent experiments10 on the National ignition Facility point to RT and RM instabilities as the 

culprits preventing ignition.  

In their simplest form the instabilities appear as single- or multi-scale perturbations at an 

interface where they grow and lead to intermixing of the fluids. The progression is usually 

divided into three stages: Linear, nonlinear, and turbulent. In the linear and nonlinear stages a 

single-scale perturbation of wavenumber k  and amplitude )(t  grows with time. The linear and 

nonlinear stages are divided by the conditions 1k  and 1k  respectively.11 In the third, 

turbulent regime, there is no unique k  characterizing the instability – instead, a multi-scale 

perturbation of magnitude )(th  evolves and grows wider with time. 
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In addition to g  or v , the parameter most prominent in RT and RM instabilities is the 

Atwood number A  defined as )/()( ABABA   . Compressibility in The RM instability 

can lead to subtle effects whereby a perturbation can grow even when 0A , but these are rare.12 

By far the majority of cases grow when gA  or Av  does not vanish. In fact, since gravity 

couples only to mass (or density), we know that g  or v  can appear only as the combination 

gA  or Av . In another context, before the RT or RM instabilities were known, such an 

observation led Boussinesq13 to propose what is universally known as the “Boussinesq 

Approximation” (B.A), where all density gradients are neglected except for gravity (See also 

Chandrasekhar14). This paper is a study of the B.A. in RT and RM instabilities. In particular we 

try and answer the following questions: What quantities in RT and RM instabilities can be 

estimated by the B.A., and how good is the B.A. as a function of the Atwood number A ? 

Previous studies15-18, dealing exclusively with the RT instability, applied numerical 

techniques to low- A  systems where the B.A. is appropriate. As far as we know no numerical or 

analytic techniques have been applied to compare Boussinesq with full results, techniques that 

we use to answer the two questions posed above. 

We can obtain general results by combining dimensional analysis with what is already 

known about RT and RM instabilities. There are 5 variables: , k , A , g  or v , and t . We have 

pointed out19 that only 3 dimensionless independent quantities can be formed: tgk  or ktv , 

k0 , and A . As argued above, only gA  or Av  appear in the incompressible Euler equations 

(we neglect viscosity). It follows that k  must be expressed as 

),;( 0 AktgAkFk RT           (1a) 

or 
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),;v( 0 AkAktFk RM   .             (1b) 

Other possible combinations are 0/ , often called the “growth factor,” obviously given by 

Fk)/1( 0 . Similarly, for the independent variables one may choose tgA 0/  or 0/v At . 

These forms are useful for expressing h , the turbulent mixing width, because it depends only on 

4 variables (there is no “ k ”) and one must write 

 );/(/ 00 AthgAGhh RT              (2a) 

or 

);/v(/ 00 AhAtGhh RM               (2b) 

where 0h , like 0 , denotes its value at 0t . 

By definition, the Boussinesq amplitudes B or Bh  are obtained by setting the isolated 

0A  in the above equations, such as 

tgAkF
k

B (
1

 or )0,;v 0kAkt                (3) 

or 

thgAGhhB
00 /( or )0;/v 0hAt .              (4) 

To evaluate the B.A. we study the “Boussinesq ratio” BR defined as 

 /BBR                   (5) 

or hhB /  in the turbulent regime. For simplicity of notation we forego the subscripts RT or RM 

as it will be clear from the context. 

Several properties of BR  can be immediately deduced: 1)0( ARB . Since   and B  

are both equal to 0  at 0t , 1)0( tRB . Furthermore, in the linear regime, i.e. 1k , 

1BR . This follows from examining the explicit expressions for the linear regime, 
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)cosh(0 tgAk                (6a) 

or 

 )v1(0 Akt               (6b) 

as given in Refs. 1-4. Notice that A  appears only in the combination gA  or Av  and there are 

no “extra” A  terms that need to be zeroed out to obtain B . Therefore 1BR . 

There are actually two amplitudes, “bubble” and “spike.” Bubble refers to the penetration 

of the low-density fluid into the heavier one, and spike is the opposite. In the linear regime 

spikebubble    and 1BR  is true for both bubbles and spikes. 

In the nonlinear stage BR  will be different from 1 and is the subject of the next two 

sections where an analytic or semi-analytic model is used to estimate BR . However, more can be 

said about BR  based on what is generally known about RT and RM instabilities without recourse 

to any model. Obviously, 1)0( ARB , the traditional low- A  application of the B.A. We are 

interested in high- A , up to 1A  where we expect the B.A. to break down. 

It is well-known that bubbles and spikes behave similarly at low A , but as A  increases  

the spikes get longer than the bubbles and develop sharp ends, a behavior noted in the very first 

laboratory experiments20 by Lewis following Taylor’s analysis. It follows that one should not 

apply the B.A. to spikes at moderate-to-high A , leaving open the question for the bubbles. We 

illustrate this behavior in Fig. 1 where we compare two RT problems having the same gA  but 

one with 05.0A  and the other with 95.0A , and also two RM problems having the same 

Av  but one with 10.0A  and the other with 75.0A . We have used the hydrocode CALE21 

to generate these four problems. Clearly, the spikes are quite different between low- A  and high-



 6

A , but the bubbles are similar. For this reason we concentrate on nonlinear bubbles in Secs. II 

and III.  The turbulent regime is taken up briefly in Sec. IV, and conclusions are given in Sec. V. 

 

II. ANALYTIC MODEL 

We saw above that outside the relatively small domain 0A  the B.A. is not a good 

approximation for spikes but may still be viable for bubbles. A quantitative comparison can be 

made from Fig. 1: the spikes in Figs. 1(a) and 1(b) are 1.96 cm and 4.05 cm respectively, widely 

different, while the bubbles are 1.56 cm and 1.22 cm, a mere 22% difference. Note that the larger 

A  has the smaller bubble. Similarly, the spikes in Figs. 1(c) and 1(d) are 0.91 cm and 1.72 cm, 

very different, while the bubbles are much closer at 0.77 cm and 0.61 cm (these numbers are 

obtained by placing tracers at the maximum and minimum locations of the initially sinusoidal 

interface). Note again that the difference is only 21% and that the larger A  has the smaller 

bubble. Of course the opposite is the case for the spikes, implying that while the B.A. 

underestimates the spike amplitude (rather obvious given what we know about RT and RM 

instabilities), it overestimates the bubble amplitude but not by much. 

We can extend the B.A. by considering it as the lowest-order term in a Taylor expansion 

around 0A , keeping gA  or Av  fixed, and calculating the next or higher-order terms: 

...)(/ 2
1  AOkACB              (7) 

valid for small A  and for both RT and RM. The sign of this next-order-term, 1C , determines 

whether B  underestimates or overestimates the full  . In the rest of this section we use an 

analytic model to estimate B  and 1C  for RT and RM instabilities in the nonlinear regime. 
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A. RT 

We shall use an analytic model19 based on Layzer’s approach22 as adopted by more recent 

work23-26. A semi-analytic model involving ordinary differential equations will be given in Sec. 

III. Here we consider the fully analytic expression19,27 

)]ln[cosh(
1

0 tkgA
k LL

L

               (8) 

where 

 )1(2/)1)(1( AcAckAcckL               (9) 

and 

)1/(2 AcAcAAL  .             (10) 

The parameter c  appearing above takes on the value 2 for “2D” (two-dimensional) 

perturbations and the value 1c  for “3D” (three-dimensional) perturbations. “2D” refers to 

curtain-like perturbations which start with kxt cos)0( 0   where  /2k ,   being the 

perturbation wavelength. “3D” refers to an axisymmetric configuration which starts 

)/()0( 100 RrJt   , r  being the radial position normal to the axis. Here 0J  is the Bessel 

function of order 0, and 832.31   is the first zero of 1J . In this “tubular flow” geometry one 

defines Rk /1 , R  being the radius of the tube. These two geometries were considered by 

Layzer whose pioneering work22 forms the basis of most modern analytic treatments of RT and 

RM instabilities (for a derivation and generalization see Ref. 27). 

The full model proposes using the linear results for *  , defined by 

)1(/1* ck  ,              (11) 

and use Eq. (8) for *  . We skip the linear regime, discussed in the Introduction, because the 

B.A. is exact ( 1BR ) in that regime. 
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To calculate B  from Eq. (8) we zero-out all A  except in gA . Considering 

)(Akk LL  and )(AAA LL  , we obtain 

)])0()0(ln[cosh(
)0(

1
0 tkgA

k LL
L

B   

   )])1/(ln[cosh(
2

0 tccgAk
ck

 .            (12) 

As discussed above, B  can be considered as the zero-order term in a qualified Taylor 

expansion around 0A  (qualified because we keep gA  fixed). To obtain the next-order term 1C  

defined in Eq. (7), we expand Eq. (8) and, after some algebra, find 

)1(/)]ln(cosh4tanh)3[(1 ccxxxcC             (13)  

where tccgAktkgAtx LLL )1/()0()0()0(   . We show in the Appendix that 01 C for all 

x . 

The Boussinesq ratio calculated from Eqs. (8) and (12) is plotted in Fig. 2 as a function of 

tgk  for 1c and 2 and for 3 values of A . We have taken *0   . BR  is not sensitive to 0  – 

it appears only as an additive constant in this model, a point discussed more in Sec. III. Note that 

B
D

B
D RR 32  . 

The asymptotic value of BR  is 

AtgkRB  1)(              (14) 

independent of c . This implies that the B.A. overestimates the full   by no more than 12   or 

~41%. 
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B. RM 

Essentially the same steps can be repeated for the RM case. The starting formula for the 

full amplitude is19,27 

)1ln(
1

00 tk
k L

L

               (15) 

where Ak v00   is the initial growth rate as calculated by Richtmyer3. The “extra” A  factors 

appear only in Lk  defined in Eq. (9). Setting those A ’s equal to 0 we obtain 

 )2/1ln(
2

00 ktc
ck

B   .             (16) 

The Boussinesq ratio BR  calculated from the above two equations is plotted in Fig. 3 as a 

function of vkt  for 1c  and 2 and for 25.0A , 0.50, and 0.75. Note that B
D

B
D RR 32   in this 

case. 

1C , the first-order correction to the B.A., can be calculated by the qualified (i.e. 

.0 const ) Taylor expansion of Eq. (15) around 0A . We find 

)1(/)]1ln(
1

[41 ccx
x

x
C 


             (17) 

where 2/v2/)0( 2
000 Atkcktctkx L    . As in the RT case we show in the Appendix that 

01 C , meaning  B  hence 1BR . In other words the B.A. overestimates the RM bubble 

although, again, not by much. 

 

III. GONCHAROV’S MODEL26 

 Layzer’s potential flow model22 was for one fluid only, i.e. 1A . Goncharov extended26 

it to two fluids, i.e., arbitrary A . The basic idea is to use the linear potentials kye~  in the 



 10

nonlinear Bernoulli equation, supplanted by a term y~ . Such a term was used by Hecht et al. 

and by Goncharov to satisfy the kinematic and dynamic conditions in potential flow23,26. One 

obtains two ordinary differential equations, one for 2D and another for 3D, which can be 

combined using the variable c : 

 02
8 22

222

21  
gA

D

kc
F

D
F


            (18) 

where 

 )1(8/)1(2/2 22
2

22
21 ckccAkcAF   ,        (19a) 

 )1/()12(2 2
2
22 ckccAAAF    

     22 )1(4/)12/3( ccAcAck  ,      (19b) 

 )1(4/2 cckD  ,            (19c) 

and 

     )1(4/111)( ))(1(
02

0 cekcckt ck    .        (19d) 

Eq. (18) reduces to the equations in Ref. 24 if we set 1A  and, if we additionally set 00  , to 

Layzer’s equations22. The derivation in the above form can be found in Ref. 27. 

In general Eq. (18) must be solved numerically. But when *0    it can be solved 

analytically. The solutions are Eq. (8) and Eq. (15) given above, solutions made possible by the 

fact that 2  becomes constant at *0   . 

To obtain the Boussinesq limit of Eq. (18) set 0A  in 2,1F  : 

)1(8/22
11 ckcFF B  ,           (20a) 

and 

)1/(]4/)21[( 222 cckckFF B   .         (20b) 
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One can calculate numerically the solutions   and B  from the above equations and 

form BR . If *0    the results are identical to Figs. (2) and (3), but differ (though not by much) 

at other values of 0 . This is true unless 0  is extremely large in which case Eq. (18), with the 

original 1F  and 2F , fails completely, as we have pointed out previously28. The value where this 

happens is given by 








 



 2max0

)1(4
11

)1(2
)(

Ac

c

c

c
k .           (21) 

This expression is derived27,28 by setting 01 F  and this is the reason Eq. (18) fails, 

giving an unphysical )(t  that decreases (!) with time. 

Now, BF1  does not have such a zero – from Eq. (20a), it is always negative. It follows 

that Goncharov’s model in the B.A. does not suffer from this large- 0  breakdown and indeed, 

from Eq. (21), max0 )(  as 0A , meaning any value of 0  is admissible in that limit. 

We compare the different models in Fig. 4 where we show the results of running a CALE 

simulation with the same input as Fig. 1(b) but with a 6 times larger 78.0)(2 max00   cm. The 

CALE results for the bubble amplitude are compared with Eq. (8) and its Boussinesq equivalent 

Eq. (12), and also with Eq. (18) which gives the negative  , while its Boussinesq equivalent, 

using BF1  and BF2 , circumvents that problem. Needless to say, the Boussinesq limit of 

Goncharov’s equations is a much better description of bubble  at large 0 . 
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IV. TURBULENT STAGE 

A number of experiments29-33 have shown that rather simple laws govern RT turbulent 

mixing widths: 

2,, gAth spikebubblespikebubble               (22) 

where spikebubble,  are “constants” depending only on A . Clearly, this is where “extra” A  terms 

might appear. As always, for low A  bubblespike   , but at high A  spike  is much larger than 

bubble , reaching bubble5.4~  near 1A . It follows that the B.A. is not a good approximation for 

spikeh  except in the traditional low- A  region. On the other hand, bubble  is observed29-33 to be 

independent of A  and is in the range 0.05-0.07. It follows that the B.A. is an excellent 

approximation for bubbleh  because A  appears only in the combination gA , the same as in the 

linear regime (Eq. (6a)). 

As for RM mixing, we had proposed34 

Ath spikebubblespikebubble v2 ,,   ,             (23) 

an expression that is consistent with recent experiments35-38. It follows that, just like the RT case, 

the B.A. is not a good one for the spike but is excellent for the bubble. This is important because 

it implies that treatments using the B.A. may apply to bubbles at all Atwood numbers in both RT 

and RM turbulence. 

 

V. CONCLUSIONS 

We saw in Sec. I that scaling arguments, based on the available dimensionless variables 

in RT and RM problems, can go far in determining the behavior of the Boussinesq ratio BR . By 

setting 0A  in the B.A. (except in gA  or Av ) one takes bubble~spike since there is no more a 

distinction between high density and low density fluids. This is a poor approximation at high A  
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since the spikes get substantially longer than bubbles as is well-known and is illustrated in Fig. 1. 

Bubbles, by contrast, are much less sensitive to A  and the B.A. is acceptable even at the extreme 

limit 1A . As far as we know there is no general argument as to whether the B.A. 

underestimates or overestimates the true value. Using a Layzer-type model we found that 

ARB  11  for the RT case, so it overestimates bubble  but the error is at most ~41%, as 

shown in Fig. 2. For RM we find that the B.A. again overestimates bubble and BR  can be larger at 

very late times but at relatively early times it also falls within the 41% estimate (Fig. 3). 

One may call the B.A. a “broken symmetry” because it is “almost” valid. It is a perfectly 

good symmetry in the two extreme, linear and turbulent, regimes as far as the bubble is 

concerned, but broken in the intermediate, nonlinear regime. Note, however, that the symmetry 

breaking is not large. 

Another way to use the B.A. or to assess its validity is to note that under the B.A. two 

problems with different A ’s but the same g  would be related by a simple A/1  scaling in time. 

In Fig. 5 we compare Fig.1(a) ( 05.0A , 20t ms) with another problem having the same g  

but 9 times larger 45.0A , now at 67.63/209/20 t ms . Comparing bubbles we get 

1.56 cm (low A ) vs. 1.46 cm (high A ). Such a simple At /1~  scaling would not hold in the 

full bubble  where A  appears in many places. Of course for RM the scaling is At /1~ . 

Perhaps the most important conclusion of this work is that earlier considerations of the 

B.A. in RT instabilities15-18 can be extended to larger A . Similarly, future applications of the 

B.A. in RM instabilities need not be restricted to low A  as far as the bubble is concerned. 

Indeed, the fully turbulent bubble mixing widths show no distinction between low A  and high 



 14

A  beyond its Boussinesq appearance in gA  or Av , as evidenced by bubble  being independent 

of A ; Non-Boussinesq effects appear only in the highly A –dependent spike . 
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APPENDIX: 0C 1  

Start with the RT case, Eq. (13), and show that )(xF , defined by 

)ln(cosh4tanh)3()( xxxcxF  ,           (A1) 

satisfies the following 3 properties: 

  i) 0)( xF ,   0x , 

 ii) 0)( xF ,   x , 

iii) 0
dx

dF
,    x0 .            (A2) 

Expanding )(xF  near 0x  we find 3/)2()1()( 42 xcxcxF   which is negative 

for both 1c  or 2c . As x , xcF )1(   which is also negative. Finally, assume 

0/ dxdF ; this implies 

 x
c

c
x





1

)3(2
)2sinh( .             (A3) 

For (A3) to be correct the slope of the left-hand-side near 0x  must be less than the slope of 

the right-hand-side, that is 

 
c

c





1

)3(2
2               (A4) 

which implies 1c , contradicting the definition that 1c  or 2c . It follows that 0/ dxdF  

which completes the proof that 0)( xF  for all  x0 . 
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 The steps are the same for the RM case where, from Eq. (17), 

 )1ln(
1

)( x
x

x
xF 


 .            (A5) 

i) 02/)0( 2  xxF ; ii) 0)1ln(1)(  xxF ; and iii) 2)1/(/ xxdxdF   never 

vanishes for  x0 . It follows that 0)( xF  for all  x0 . 
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Figure Captions: 
 
Fig. 1. Two RT and two RM simulations comparing low- A  and high- A  problems keeping gA  

(for RT) and Av  (for RM) the same. The parameters defining (a) are 66.0g cm/ms2, 

05.0A , 43.2 cm, and 13.00  cm. For (b) we let 19/gg  , 95.019  AA , keeping 

the same   and 0 . (c) is defined by 41v  cm/ms, 1.0A , 0.2 cm, and 1.00  cm. For 

(d) we let 5.7/vv  , 75.05.7  AA , keeping the same   and 0 . The arrows indicate 

the location of an unperturbed interface relative to which bubbles (below the arrows) and spikes 

(above the arrows) are defined. The main difference between low- A  and high- A  lies in the 

spike behavior; bubbles are much less sensitive and amenable to the Boussinesq approximation. 
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Fig. 2. The Boussinesq ratio BR  calculated from Eqs. (8) and (12) for bubbles generated by the 

RT instability. Black lines refer to 2D, i.e., 2c , and red refers to 3D or 1c . The initial k0  is 

set equal to )1/(1 c . Note that B
D

B
D RR 32  . 

Fig. 3. Same as Fig. 3 for the RM case calculated using Eqs. (15) and (16). Note that B
D

B
D RR 32  . 

Fig. 4. Bubble amplitude versus time for a problem just like the one shown in Fig. 1b but with a 

six times larger initial amplitude: 78.0)(2 max00   cm, where max0 )(  is defined by Eq. (21). 

Eq. (18) fails for any max00 )(  . Its Boussinesq version, obtained by setting 0A  except in 

the gA  term, gives reasonable results. Eqs. (8) and its Boussinesq version, Eq. (12), come closer 

to the CALE calculation. 

Fig. 5. Comparison of (a) low- A , late time simulation with (b) high- A , early time simulation, 

keeping everything else the same. Fig. 5(a) is the same as Fig. 1(a); in Fig.5(b) A  has been 

increased 9-fold and the snapshot taken 3 times earlier, confirming tA  Boussinesq scaling. 
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